Step of Proof: uni_sat_imp_in_uni_set
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
uni
sat
imp
in
uni
set
:
T
:Type,
a
:
T
,
Q
:(
T
). (
a
= !
x
:
T
.
Q
(
x
))
(
a
{!
x
:
T
|
Q
(
x
)})
latex
by ((((Unfolds ``uni_sat unique_set`` 0)
CollapseTHEN (RepD))
)
CollapseTHENA (
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
a
:
T
C1:
3.
Q
:
T
C1:
4.
Q
(
a
)
C1:
5.
a'
:
T
.
Q
(
a'
)
(
a'
=
a
)
C1:
a
{
x
:
T
|
Q
(
x
)
(
y
:
T
.
Q
(
y
)
(
y
=
x
))}
C
.
Definitions
P
Q
,
{!
x
:
T
|
P
(
x
)}
,
t
T
,
x
(
s
)
,
a
= !
x
:
T
.
Q
(
x
)
,
P
Q
,
,
x
:
A
.
B
(
x
)
origin